
The combination of width and depth subtyping cover the most interesting cases
of object subtyping. A type system that implemented only these two would, how-
ever, needlessly annoy programmers. Other convenient (and mathematically necessary)
rules include the ability to permute names, reflexivity (every type is a subtype of itself,
because it is more convenient to interpret the subtype relationship as ⊆), and transitiv-
ity. Languages like Typed JavaScript employ all these features to provide maximum
flexibility to programmers.

16 Checking Program Invariants Dynamically: Con-
tracts

179



Contents

180



Type systems offer rich and valuable ways to represent program invariants. How-
ever, they also represent an important trade-off, because not all non-trivial properties
of programs can be verified statically. Furthermore, even if we can devise a method to This is a formal

property, known as
Rice’s Theorem.

settle a certain property statically, the burdens of annotation and computational com-
plexity may be too great. Thus, it is inevitable that some of the properties we care
about must either be ignored or settled only at run-time. Here, we will discuss run-time
enforcement.

Virtually every programming language has some form of assertion mechanism that
enables programmers to write properties that are richer than the language’s static type
system permits. In languages without static types, these properties might start with
simple type-like assertions: whether a parameter is numeric, for instance. However,
the language of assertions is often the entire programming language, so any predicate
can be used as an assertion: for instance, an implementation of a cryptography package
might want to ensure certain parameters pass a primality test, or a balanced binary
search-tree might want to ensure that its subtrees are indeed balanced and preserve the
search-tree ordering.

16.1 Contracts as Predicates
It is therefore easy to see how to implement simple contracts. A contract embodies a In what follows we

will use the
language #lang
plai, for two
reasons. First, this
better simulates
programming in an
untyped language.
Second, for
simplicity we will
write type-like
assertions as
contracts, but in the
typed language
these will be
flagged by the
type-checker itself,
not letting us see
the run-time
behavior. In effect,
it is easier to “turn
off” the type
checker. However,
contracts make
perfect sense even
in a typed world,
because they
enhance the set of
invariants that a
programmer can
express.

predicate. It consumes a value and applies the predicate to the value. If the value passes
the predicate, the contract returns the value unmolested; if the value fails, the contract
reports an error. Its only behaviors are to return the supplied value or to error: it should
not change the value in any way. In short, on values that pass the predicate, the contact
itself acts as the identity function.

We can encode this essence in the following function:

(define (make-contract pred?)

(lambda (val)

(if (pred? val) val (blame "violation"))))

(define (blame s) (error 'contract "∼a" s))

Here’s an example contract:

(define non-neg?-contract

(make-contract

(lambda (n) (and (number? n)

(>= n 0)))))

(In a typed language, the number? check would of course be unnecessary because
it can be encoded—and statically checked!—in the type of the function using the con-
tract.) Suppose we want to make sure we don’t get imaginary numbers when computing
square roots; we might write

(define (real-sqrt-1 x)

(sqrt (non-neg?-contract x)))

181

http://en.wikipedia.org/wiki/Rice's_theorem


In many languages assertions are written as statements rather than as expressions, so
an alternate way to write this would be:

(define (real-sqrt-2 x)

(begin

(non-neg?-contract x)

(sqrt x)))

(In some cases this form is clearer because it states crisply at the beginning of the
function what is expected of the parameters. It also enables parameters to be checked
just once. Indeed, in some languages the contract can be written in the function header
itself, thereby improving the information given in the interface.) Now if real-sqrt-
1 or real-sqrt-2 are applied to 4 they produce 2, but if applied to -1 they raise a
contract violation error.

16.2 Tags, Types, and Observations on Values
At this point we’ve reproduced the essence of assertion systems in most languages.
What else is there to say? Let’s suppose for a moment that our language is not statically
typed. Then we will want to write assertions that reproduce at least traditional type-
like invariants, if not more. make-contract above can capture all standard type-like
properties such as checking for numbers, strings, and so on, assuming the appropriate
predicates are either provided by the language or can be fashioned from the ones given.
Or can it?

Recall that even our simplest type language had not just base types, like numbers,
but also constructed types. While some of these, like lists and vectors, appear to not
be very challenging, they are once we care about mutation, performance, and blame,
which we discuss below. However, functions are immediately problematic.

As a working example, we will take the following function:

(define d/dx

(lambda (f)

(lambda (x)

(/ (- (f (+ x 0.001))

(f x))

0.001))))

Statically, we would give this the type

((number -> number) -> (number -> number))

(it consumes a function, and produces its derivative—another function). Let us suppose
we want to guard this with contracts.

The fundamental problem is that in most languages, we cannot directly express
this as a predicate. Most language run-time systems store very limited information
about the types of values—so limited that, relative to the types we have seen so far, we
should use a different name to describe this information; traditionally they are called

182



tags. Sometimes tags coincide with what we might regard as types: for instance, a There have been a
few efforts to
preserve rich type
information from
the source program
through lower
levels of abstraction
all the way down to
assembly language,
but these are
research efforts.

number will have a tag identifying it as a number (perhaps even a specific kind of
number), a string will have a tag identifying it as a string, and so forth. Thus we can
write predicates based on the values of these tags.

When we get to structured values, however, the situation is more complex. A vector
would have a tag declaring it to be a vector, but not dictating what kinds of values its
elements are (and they may not even all be of the same kind); however, a program can
usually also obtain its size, and thus traverse it, to gather this information. (There is,
however, more to be said about structured values below [REF].)

Do Now!

Write a contract that checks that a list consists solely of even numbers.

Here it is:

(define list-of-even?-contract

(make-contract

(lambda (l)

(and (list? l) (andmap number? l) (andmap even? l)))))

(Again, note that the first two questions need not be asked if we know, statically, that we
have a list of numbers.) Similarly, an object might simply identify itself as an object,
not providing additional information. But in languages that permit reflection on the
object’s structure, a contract can still gather the information it needs.

In every language, however, this becomes problematic when we encounter func-
tions. We might think of a function as having a type for its domain and range, but to
a run-time system, a function is just an opaque object with a function tag, and perhaps
some very limited metadata (such as the function’s arity). The run-time system can
hardly even tell whether the function consumes and produces functions—as opposed
to other kinds of values—much less whether they it consumes and produces ones of
(number -> number) type.

This problem is nicely embodied in the (misnamed) typeof operator in JavaScript.
Given values of base types like numbers and strings, typeof returns a string to that
effect (e.g., "number"). For objects, it returns "object". Most importantly, for func-
tions it returns "function", with no additional information. For this reason,

perhaps typeof is
a bad name for this
operator. It should
have been called
tagof instead,
leaving open the
possibility that
future static type
systems for
JavaScript could
provide a true
typeof.

To summarize, this means that at the point of being confronted with a function, a
function contract can only check that it is, indeed, a function (and if it is not, that is
clearly an error). It cannot check anything about the domain and range of the function.
Should we give up?

16.3 Higher-Order Contracts
To determine what to do, it helps to recall what sort of guarantee contracts provide
in the first place. In real-sqrt-1 above, we demanded that the argument be non-
negative. However, this is only checked if—and when—real-sqrt-1 is actually used,
and then only on the actual values that are passed to it. For instance, if the program
contains this fragment

183



(lambda () (real-sqrt-1 -1))

but this thunk is never invoked, the programmer would never see this contract violation.
In fact, it may be that the thunk is not invoked on this run of the program, but in a later
run it will be; thus, the program has a lurking contract error. For this reason, it is usually
preferable to express invariants through static types; but where we do use contracts, we
understand that it is with the caveat that we will only be notified of errors when the
program is suitably exercised.

This is a useful insight, because it offers a solution to our problem with functions.
We check, immediately, that the purported function value truly is a function. However,
instead of ignoring the domain and range contracts, we defer them. We check the
domain contract when (and each time) the function is actually applied to a value, and
we check the range contract when the function actually returns a value.

This is clearly a different pattern than make-contract followed. Thus, we should
give make-contract a more descriptive name: it checks immediate contracts (i.e.,
those that can be checked in their entirety now). In the Racket

contract system,
immediate contracts
are called flat. This
term is slightly
misleading, since
they can also
protect data
structures.

(define (immediate pred?)

(lambda (val)

(if (pred? val) val (blame val))))

In contrast, a function contract takes two contracts as arguments—representing
checks to be made on the domain and range—and returns a predicate. This is the
predicate to apply on values purporting to satisfy that contract. First, this checks that
the given value actually is a function: this part is still immediate. Then, we create
a surrogate procedure that applies the “residual” contracts—to check the domain and
range—but otherwise behaves the same as the original function.

This creation of a surrogate represents a departure from the traditional assertion
mechanism, which simply checks values and then leaves them alone. Instead, for func-
tions we must use the created surrogate if we want contract checking. In general,
therefore, it is useful to have a wrapper that consumes a contract and value, and creates
a guarded version of that value:

(define (guard ctc val) (ctc val))

As a very simple example, let us suppose we want to wrap the add1 function in
numeric contracts (with function, the constructor of function contracts, to be defined
momentarily):

(define a1 (guard (function (immediate number?)

(immediate number?))

add1))

We want a1 to be bound to essentially the following code:

(define a1

(lambda (x)

(num?-con (add1 (num?-con x)))))

184



Here, the (lambda (x) ...) is the surrogate; it applies two numeric contracts around
the invocation of add1. Recall that contracts must behave like the identity function in
the absence of violations, so this procedure has precisely the same behavior as add1
on non-violating uses.

To achieve this, we use the following definition of function. Remember that we For simplicity we
assume
single-argument
functions here, but
the extension to
multiple arity is
straightforward.
Indeed, more
complex contracts
can even check for
relationships
between the
arguments.

have to also ensure that the given value is truly a function (as add1 above indeed is,
and can be checked immediately, which is why the check has disappeared by the time
we bind the surrogate to a1):

(define (function dom rng)

(lambda (val)

(if (procedure? val)

(lambda (x) (rng (val (dom x))))

(blame val))))

To understand how this works, let us substitute arguments. To keep the resulting
code readable, we will first construct the number? contract checker and give it a name:

(define num?-con (immediate number?))

= (define num?-con

(lambda (val)

(if (number? val) val (blame val))))

Now let’s return to the definition of a1. First we apply guard:

(define a1

((function num?-con num?-con)

add1))

Now we apply the function contract constructor:

(define a1

((lambda (val)

(if (procedure? val)

(lambda (x) (num?-con (val (num?-con x))))

(blame val)))

add1))

Applying the left-left-lambda gives:

(define a1

(if (procedure? add1)

(lambda (x) (num?-con (add1 (num?-con x))))

(blame val)))

Notice that this immediately checks that the guarded value is indeed a function. Thus
we get

185



(define a1

(lambda (x)

(num?-con (add1 (num?-con x)))))

which is precisely the surrogate we desired, with the behavior of add1 on non-violating
executions.

Do Now!

How many ways are there to violate the above contract for add1?

There are three ways, corresponding to the three contract constructors:

1. the value wrapped might not be a function;

2. the wrapped value might be a function that is applied to a non-numeric value; or,

3. the wrapped value might be a function that consumes numbers but produces
values of non-numeric type.

Exercise

Write examples that perform each of these three violations, and observe
the behavior of the contract system. Can you improve the error messages
to better distinguish these cases?

The same wrapping technique works for d/dx as well:

(define d/dx

(guard (function (function (immediate number?) (immediate number?))

(function (immediate number?) (immediate number?)))

(lambda (f)

(lambda (x)

(/ (- (f (+ x 0.001))

(f x))

0.001)))))

Exercise

There are seven ways to violate this contract, corresponding to each of the
seven contract constructors. Violate each of them by passing arguments or
modifying code, as needed. Can you improve error reporting to correctly
identify each kind of violation?

Notice that the nested function contract defers the checking of the immediate con-
tracts for two applications, rather than one. This is what we should expect, because
immediate contracts only report problems with actual values, so they cannot report
anything until applied to actual values. However, this does mean that the notion of “vi-
olation”’ is subtle: the function value passed to d/dx may in fact truly be in violation
of the contract, but this violation will not be observed until numeric values are passed
or returned.

186



16.4 Syntactic Convenience
Earlier we saw two styles of using flat contracts, as embodied in real-sqrt-1 and
real-sqrt-2. Both styles have disadvantages. The latter, which is reminiscent of
traditional assertion systems, simply does not work for higher-order values, because it
is the wrapped value that must be used in the computation. (Not surprisingly, traditional
assertion systems only handle immediate contracts, so they fail to notice this subtlety.)
The style in the former, where we wrap each use with a contract, works in theory but
suffers from three downsides:

1. The developer may forget to wrap some uses.

2. The contract is checked once per use, which is wasteful when there is more than
one use.

3. The program comingles contract checking with its functional behavior, reducing
readability.

Fortunately, a judicious use of syntactic sugar can solve this problem in common cases.
For instance, suppose we want to make it easy to attach contracts to function parame-
ters, so a developer could write

(define/contract (real-sqrt (x :: (immediate positive?)))

(sqrt x))

with the intent of guarding x with positive?, but performing the check only once, on
function invocation. This should translate to, say,

(define (real-sqrt new-x)

(let ([x (guard (immediate positive?) new-x)])

(sqrt x)))

That is, the macro generates a fresh name for each identifier, then associates the name
given by the user to the wrapped version of the value supplied to that fresh name. The
following macro implements exactly this:

(define-syntax (define/contract stx)

(syntax-case stx (::)

[(_ (f (id :: c) ...) b)

(with-syntax ([(new-id ...) (generate-temporaries #'(id ...))])

#'(define f

(lambda (new-id ...)

(let ([id (guard c new-id)]

...)

b))))]))

With conveniences like this, designers of contract languages can improve the readabil-
ity, efficiency, and robustness of contract use.

187



16.5 Extending to Compound Data Structures
As we have already discussed, it appears easy to extend contracts to structured datatypes
such as lists, vectors, and user-defined recursive datatypes. This only requires that the
appropriate set of run-time observations be available. This will usually be the case, up
to the resolution of types in the language. For instance, as we have discussed [REF], a
language with datatypes does not require type predicates but will still offer predicates to
distinguish the variants; this is case where type-level “contract” checking is best (and
perhaps must) be left to the static type system, while the contacts assert more refined
structural properties.

However, this strategy can run into significant performance problems. For instance,
suppose we built a balanced binary search-tree to perform asymptotic logarithmic time
(in the size of the tree) insertions and lookups. Now say we have wrapped this tree in
a suitable contract. Sadly, the mere act of checking the contract visits the entire tree,
thereby taking linear time! Ideally, therefore, we would prefer a strategy whereby the
contract was already checked—incrementally—at the time of construction, and does
not need to be checked again at the time of lookup.

Worse, both balancing and search-tree ordering are recursive properties. In princi-
ple, therefore, they attach to every sub-tree, and so should be applied on every recursive
call. During insertion, which is a recursive procedure, the contract would be checked
on every visited sub-tree. In a tree of size t, the contract predicate applies to a sub-tree
of t

2 elements, then to a sub-sub-tree of t
4 elements, and so on, resulting—in the worst

case—in visiting a total of t
2 + t

4 + · · · + t
t elements...making our intended logarithmic-

time insertion process take linear time.
In both cases, there is ready mitigation available in many cases. Each value needs to

be associated (either intrinsically, or by storage in a hash table) with the set of contracts
it has already passed. Then, when a contract is ready to apply, it first checks whether
the value has already been checked and, if it has, does not check again. This is essen-
tially a form of memoization of contract checking and can thus reduce the algorithmic
complexity of checking. Again, like memoization, this works best when the values are
immutable. If the values can mutate and the contracts perform arbitrary computations,
it may not be sound to perform this optimization.

There is a subtler way in which we might examine the issue of data structures. As
an example, consider the contract we wrote earlier to check that all values in a numeric
list are even. Suppose we have wrapped a list in this contract, but are interested only in
the first element of the list. Naturally, we are paying the cost of checking all the values
in the list, which may take a very long time. More importantly, however, a user might
argue that reporting a violation about the second element of the list is itself a violation
of our expectation about contract-checking, since we did not actually use that element.

This suggests deferring checking even for some values that could be checked im-
mediately. For instance, the entire list could be turned into a wrapped value containing
a deferred check, and each value is checked only when it is visited. This strategy might
be attractive, but it is not trivial to code, and especially runs into problems in the pres-
ence of aliasing: if two different identifiers are referring to the same list, one with
a contract guard and the other without, we have to ensure both of them function as
expected (which usually means we cannot store any mutable state in the list itself).

188



16.6 More on Contracts and Observations
A general problem for any contract implementation—which is exacerbated by complex
data—is a curious one. Earlier, we complained that it was difficult to check function
contracts because we have insufficient power to observe: all we can check is that a value
is a function, and no more. In real languages, the problem for data structures is actually
the opposite: we have too much ability to observe. For instance, if we implement a
strategy of deferring checking of a list, we quite possibly need to use a structure to hold
the actual list, and modify first and rest to get their values through this structure
(after checking contracts). However, a procedure like list? might now return false

rather than true because structures are not lists; therefore, list? needs to be re-bound
to a procedure that also returns true on structures that represent these special deferred-
contract lists. But the contract system author needs to also remember to tackle cons?,
pair?, and goodness knows how many other procedures that all perform observations.

In general, one observation is essentially impossible to “fix”: eq?. Normally, we
have the property that every value is eq? to itself, even for functions. However, the
wrapped value of a function is a new procedure that not only isn’t eq? to itself but
probably shouldn’t be, because its behavior truly is different (though only on contract
violations, and only after enough values have been supplied to observe the violation).
However, this means that a program cannot surreptitiously guard itself, because the
act of guarding can be observed. As a result, a malicious module can sometimes detect
whether it is being passed guarded values, behaving normally when it is and abnormally
only when it is not!

16.7 Contracts and Mutation
We should rightly be concerned about the interaction between contracts and mutation,
and even more so when we have contracts that are either inherently deferred or have
been implemented in a deferred fashion. There are two things to be concerned about.
One is storing a contracted value in mutable state. The other is writing a contract for
mutable state.

When we store a contracted value, the strategy of wrapping ensures that contract
checking works gracefully. At each stage, a contract checks as much as it can with
the value at hand, and creates a wrapped value embodying the residual check. Thus,
even if this wrapped value is stored in mutable state and retrieved for use later, it still
contains these checks, and they will be performed when the value is eventually used.

The other issue is writing contracts for mutable data, such as boxes and vectors.
In this case we probably have to create a wrapper for the entire datatype that records
the intended contract. Then, when a value inside the datatype is replaced with a new
one, the operation that performs the update—such as set-box!—needs to retrieve the
intended contract from the wrapper, apply it to the value, and store the wrapped value.
Therefore, this requires changing the behavior of the data structure mutation operators
to be sensitive to contracted values. However, mutation does not change the point at
which violations are caught: right away for immediate contracts, upon (in)appropriate
use for deferred ones.

189



16.8 Combining Contracts
Now that we’ve discussed combinators for all the basic datatypes, it’s natural to discuss
combining contracts. Just as we saw unions [REF] and intersections [REF] for types,
we should be considering unions and intersections (respectively, “or”s and “and”s), ;
for that matter, we might also consider negation. However, contracts are only superfi-
cially like types, so we have to consider these questions in their own light for contracts
rather than try to map the meanings we have learned from types to the sphere of con-
tracts.

As always, the immediate case is straightforward. Union contracts combine with
disjunction—indeed, being predicates, their results can literally be combined with or—
and intersection contracts with conjunction. We apply the predicates in turn, with short-
circuiting, and either generate an error or return the contracted value. Intersection con-
tracts combine with conjunction (and). And negation contracts are simply the original
immediate contract applied and the decision negated (with not).

Contract combination is much harder in the deferred, higher-order case. For in-
stance, consider the negation of a function contract from numbers to numbers. What
exactly does it mean to negate it? Does it mean the function should not accept num-
bers? Or that if it does, it should not produce them? Or both? And in particular, how
do we enforce such a contract? How, for instance, do we check that a function does
not accept numbers—are we expecting that when given a number, it produces an error?
But now consider the identity function wrapped with such a contract; since it clearly
does not result in an error when given a number (or indeed any other value), does that
mean we should wait until it produces a value, and if it does produce a number, reject
it? But worst of all, note that this means we will be running functions on domains on
which they are not defined: a sure recipe for destroying program invariants, polluting
the heap, or crashing the program.

Intersection contracts require values to pass all the sub-contracts. This means re-
wrapping the higher-order value in something that checks all the domain sub-contracts
as well as all the range sub-contracts. Failing to meet even one sub-contract means the
value has failed the entire intersction.

Union contracts are more subtle, because failing to meet any one sub-contract is not
grounds for rejection. Rather, it simply means that that one sub-contract is no longer a
candidate contract representing the wrapped value; the other sub-contracts might still
be candidates, and only when no others are left must be reject the value. This means the
implementation of union contracts must maintain memory of which sub-contracts have
and have not yet passed—memory, in this case, being a sophisticated term for the use
of mutation. As each sub-contract fails, it is removed from the list of candidates, while In a multi-threaded

language like
Racket, this also
requires locks to
avoid race
conditions.

all the remaining ones continue to applied. When no candidates remain, the contract
system must report a violation. The error report would presumably provide the actual
values that eliminated each part of each sub-contract (keeping in mind that these may
be nested multiple functions deep).

The implemented versions of contract constructors and combinators in Racket place
restrictions on the acceptable forms of sub-contracts. These enable implementations
that are both efficient and yield useful error messages. Furthermore, the more extreme
situations discussed above rarely occur in practice—though now you know how to

190



implement them if you need to.

16.9 Blame
Let’s now return to the issue of reporting contract violations. By this I don’t mean what
string to we print, but the much more important question of what to report, which as
we are about to see is really a semantic consideration.

To illustrate the problem recall our definition of d/dx above, and assume we were
running it without any contract checking. Suppose now that we apply this function
to the entirely inappropriate string-append (which neither consumes nor produces
numbers). This simply produces a value:
> (define d/dx-sa (d/dx string-append))

(Observe that this would succeed even if contract checking were on, because the im-
mediate portion of the function contract recognizes string-append to be a function.)
Now suppose we apply d/dx-sa to a number, as we ought to be able to do:
> (d/dx-sa 10)

string-append: contract violation

expected: string?

given: 10.001

Notice that the error report is deep inside the body of d/dx. On the one hand, this is en-
tirely legitimate: that is where the improper application of string-append occurred.
However, the fault is not that of d/dx at all—rather, it is the fault of whatever body
of code supplied string-append as a purportedly legitimate function from numbers
to numbers. Except, however, the code that did so has long since fled the scene; it
is no longer on the stack, and is hence outside the ambit of traditional error-reporting
mechanisms.

This problem is not a peculiarity of d/dx; in fact, it routinely occurs in large sys-
tems. This is because systems, especially with graphical, network, and other external
interfaces, make heavy use of callbacks: functions (or methods) that register interest in
some entity and are invoked to signal some status or value. (Here, d/dx is the moral
equivalent of the graphics layer, and string-append is the callback that has been sup-
plied to (and stored by) it.) Eventually, the system layer invokes the callback. If this
results in an error, it is the fault of neither the system layer—which was given a call-
back of purportedly the right contract—nor of the callback itself, which presumably
has legitimate uses but was improperly supplied to the function. Rather, the fault is of
the entity that introduced these two entities. However, at this point the call stack con-
tains only the callback (on top) and the system (below it)—and the only guilty party is
no longer present. These kinds of errors can therefore be extremely difficult to debug.

The solution is to extend the contract system to incorporate a notion of blame.
The idea is to effectively record the introduction that resulted in a pair of components
coming together, so that if a contract violation occurs between them, we can ascribe
the failure to the expression that did the introduction. Observe that this is only really
interesting in the context of functions, but for consistency we will extend blame to
immediate contracts as well in a natural way.

For a function, notice that there are two possible points of failure: either it was
given the wrong kind of value (the pre-condition), or it produced the wrong kind of

191



value (the post-condition). It is important to distinguish these two cases because in
the former case we should blame the environment—in particular, the actual parameter
expression—whereas in the latter case (assuming the parameter has passed muster) we
should blame the function itself. (The natural extension to immediate values is that
we can only blame the value itself for not satisfying the contract, which is akin to the
“post-condition”.)

For contracts, we will introduce the terms positive and negative position. For a
first-order function, the negative position is the pre-condition and the positive one the
post-condition. Therefore, this might appear to be needless extra terminology. As we
will soon see, however, these terms have a more general meaning.

We will now generalize the parameters consumed by contracts. Previously, im-
mediate contracts consumed a predicate and function contracts consumed domain and
range contracts. This will still be the case. However, what they each return will be
a function of two arguments: labels for the positive and negative positions. (These
labels can be drawn from any reasonable datatype: abstract syntax nodes, buffer off-
sets, or other descriptions. For simplicity, we will use strings.) Thus function contracts
will close over the labels of these program positions, to later blame the provider of an
invalid function.

The guard function is now responsible for passing through the labels of the con-
tract application locations:

(define (guard ctc val pos neg) ((ctc pos neg) val))

and let us also have blame display the appropriate label (which we will pass to it from
the contract implementations):

(define (blame s) (error 'contract s))

Suppose we are guarding the use of add1, as before. What are useful names for the
positive and negative positions? The positive position is post-condition: i.e., any failure
here must be blamed on the body of add1. The negative position is the pre-condition:
i.e., any failure here must be blamed on the parameter to add1. Thus:

(define a1 (guard (function (immediate number?)

(immediate number?))

add1

"add1 body"

"add1 input"))

Had we provided a non-function to guard, we would expect an error at the “post-
condition” location: this is not really a failure of the post-condition, but surely the
parameter cannot be blamed if the application failed to be a function. (However, this
shows that we are really stretching the term “post-condition”, and the terms “positive”
provides a useful alternative.) Because we trust the implementation of add1 to only
produce numbers, we would expect it is impossible to fail the post-condition. How-
ever, we would expect an expression like (a1 "x") to trigger a pre-condition error,
presumably signaling a contract error at the location "add1 input". In contrast, had
we guarded a function that violates the post-condition, such as this,

192



(define bad-a1 (guard (function (immediate number?)

(immediate number?))

number->string

"bad-add1 body"

"bad-add1 input"))

we would expect blame to be ascribed to "bad-add1 body".
Let us now see how to implement these contract constructors. For immediate con-

tracts, we have seen that blame should be ascribed to the positive position:

(define (immediate pred?)

(lambda (pos neg)

(lambda (val)

(if (pred? val) val (blame pos)))))

For functions, we might be tempted to write

(define (function dom rng)

(lambda (pos neg)

(lambda (val)

(if (procedure? val)

(lambda (x) (dom (val (rng x))))

(blame pos)))))

but this fails to work in a very fundamental way: it violates the expected signature on
contracts. That is because all contracts now expect to be given the labels of positive and
negative positions, which means dom and rng cannot be used as above. (As another
hint, we are using pos but not neg anywhere in the body, even though we have seen
examples where we expect the position bound to neg to be blamed.) Instead, clearly,
we somehow instantiate the domain and range contracts using pos and neg, so that
they “know” and “remember” where a potentially violating function was applied.

The most obvious reaction would be to instantiate these contract constructors with
the same values of dom and rng:

(define (function dom rng)

(lambda (pos neg)

(let ([dom-c (dom pos neg)]

[rng-c (rng pos neg)])

(lambda (val)

(if (procedure? val)

(lambda (x) (rng-c (val (dom-c x))))

(blame pos))))))

Now all the signatures match up, and we can run our contracts. But when we do so, the
answers are a little strange. For instance, on our simplest contract violation example,
we get
> (a1 "x")

contract: add1 body

193



Huh? Maybe we should expand out the code of a1 to see what happened.

(a1 "x")

= (guard (function (immediate number?)

(immediate number?))

add1

"add1 body"

"add1 input")

= (((function (immediate number?) (immediate number?))

"add1 body" "add1 input")

add1)

= (let ([dom-c ((immediate number?) "add1 body" "add1 input")]

[rng-c ((immediate number?) "add1 body" "add1 input")])

(lambda (x) (rng-c (add1 (dom-c x)))))

= (let ([dom-c (lambda (val)

(if (number? val) val (blame "add1 body")))]

[rng-c (lambda (val)

(if (number? val) val (blame "add1 body")))])

(lambda (x) (rng-c (add1 (dom-c x)))))

Poor add1: it never stood a chance! The only blame label left is "add1 body", so it
was the only thing that could ever be blamed.

We will return to this problem in a moment, but observe how in the above code,
there are no real traces of the function contract left. All we have are immediate con-
tracts, ready to blame actual values if and when they occur. This is perfectly consistent
with what we said earlier [REF] about being able to observe only immediate values. Of
course, this is only true for first-order functions; when we get to higher-order functions,
this will no longer be true.

What went wrong? Notice that only the contract bound to rng-c ought to be blam-
ing the body of add1. In contrast, the contract bound to dom-c ought to be blaming
the input to add1. It’s almost as if, in the domain position of a function contract, the
positive and negative labels should be...swapped.

If we consider the contract-guarded d/dx, we see that this is indeed the case. The
key insight is that, when applying a function taken as a parameter, the “outside” be-
comes the “inside” and vice versa. That is, the body of d/dx—which was in positive
position—is now the caller of the function to differentiate, putting that function’s body
in positive position and the caller—the body of d/dx—in negative position. Thus,
on the domain side of the contract, every nested function contract causes positive and
negative positions to swap.

On the range side, there is no need to swap. Consider again d/dx. The function
it returns represents the derivative, so it should be given a number (representing the
point at which to calculate the derivative) and it should return a number (the derivative
at that point). The negative position of this function is indeed the client who uses the
derivative function—the pre-condition—and the positive position is indeed the body of
d/dx itself—the post-condition—since it is responsible for generating the derivative.

As a result, we obtain an updated, and correct, definition for the function construc-
tor:

194



(define (function dom rng)

(lambda (pos neg)

(let ([dom-c (dom neg pos)]

[rng-c (rng pos neg)])

(lambda (val)

(if (procedure? val)

(lambda (x) (rng-c (val (dom-c x))))

(blame pos))))))

Exercise

Apply this to our earlier example and confirm that we get the expected
blame. Also expand the code manually to see why this happens.

Suppose, further, we define d/dx with the labels "d/dx body" for its positive
position and "d/dx input" for its negative. Say we supply the function number-

>string, which patently does not compute derivatives, and apply the result to 10:

((d/dx (guard (function (immediate number?)

(immediate string?))

number->string

"n->s body"

"n->s input"))

10)

This correctly indicates that the blame should be ascribed to the expression that fed
number->string as a supposed numeric function to d/dx—not to d/dx itself.

Exercise

Hand-evaluate d/dx, apply it to all the relevant violation examples, and
confirm that the resulting blame is accurate. What happens if you supply
d/dx with string->number with a function contract indicating it maps
strings to numbers? What if you supply the same function with no contract
at all?

17 Alternate Application Semantics
Long ago [REF], we considered the question of what to substitute when performing
application. Now we are ready to consider some alternatives. At the time, we suggested
just one alternative; in fact there are many more. To understand this, see whether you
can answer this question:

Which of these is the same?

• (f x (current-seconds))

• (f x (current-seconds))

• (f x (current-seconds))

195


